Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.448
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 72, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365830

RESUMO

BACKGROUND: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS: In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS: Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS: Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Masculino , Feminino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação , Diagnóstico Tardio , Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo
2.
Clin Genet ; 105(5): 488-498, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38193334

RESUMO

ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Trifosfato de Adenosina , NADP/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo
3.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228875

RESUMO

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Assuntos
Proteínas Ferro-Enxofre , Erros Inatos do Metabolismo Lipídico , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Distrofias Musculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acil Coenzima A/uso terapêutico , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico
4.
Int J Rheum Dis ; 27(1): e14906, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37737545

RESUMO

A 35-year-old male patient presented fluctuating bilateral lower extremity weakness for 3 years. Physical examination showed grade 4 proximal muscle weakness in both lower extremities and grade 5 distal muscle weakness. Laboratory data revealed elevated creatine kinase, triglycerides, and cholesterol. Muscle pathology showed deposition of lipid droplet under the sarcolemma. Bone densitometry indicated severe osteoporosis. Next-generation sequencing revealed a pathogenic mutation in the ETFDH gene. The patient was diagnosed with late-onset multiple acyl-CoA dehydrogenase deficiency. After riboflavin treatment, symptoms of the patient were relieved, physical endurance was restored, and bone mineral density was improved.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Osteoporose , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Masculino , Humanos , Adulto , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Mutação , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética
5.
Biomolecules ; 13(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136670

RESUMO

Protein-nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical-physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein-nanoparticle conjugation as a means to modulate biological functions.


Assuntos
Nanopartículas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , 60628 , Espermina/metabolismo , Eletricidade Estática , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Nanopartículas/química
6.
Genes (Basel) ; 14(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002968

RESUMO

Polyamines play an important role in developmental and environmental stress responses in plants. Polyamine oxidases (PAOs) are flavin-adenine-dinucleotide-dependent enzymes associated with polyamine catabolism. In this study, 14 genes were identified in the tobacco genome that code for PAO proteins being named based on their sequence homology with Arabidopsis PAOs (AtPAO1-5): NtPAO1A-B; NtPAO2A-C, NtPAO4A-D, and NtPAO5A-E. Sequence analysis confirmed that the PAO gene family of the allopolyploid hybrid Nicotiana tabacum is not an exact combination of the PAO genes of the maternal Nicotiana sylvestris and paternal Nicotiana tomentosiformis ones. The loss of the N. sylvestris homeolog of NtPAO5E and the gain of an extra NtPAO2 copy, likely of Nicotiana othophora origin, was revealed. The latter adds to the few pieces of evidence suggesting that the paternal parent of N. tabacum was an introgressed hybrid of N. tomentosiformis and N. othophora. Gene expression analysis indicated that all 14 PAO genes kept their expression following the formation of the hybrid species. The homeologous gene pairs showed similar or opposite regulation depending on the investigated organ, applied stress, or hormone treatment. The data indicate that the expression pattern of the homeologous genes is diversifying in a process of subfunctionalization.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , /genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas/metabolismo , Poliaminas
7.
J Biol Chem ; 299(9): 105090, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507016

RESUMO

Folate-mediated one-carbon metabolism (FOCM) is crucial in sustaining rapid proliferation and survival of cancer cells. The folate cycle depends on a series of key cellular enzymes, including aldehyde dehydrogenase 1 family member L2 (ALDH1L2) that is usually overexpressed in cancer cells, but the regulatory mechanism of ALDH1L2 remains undefined. In this study, we observed the significant overexpression of ALDH1L2 in colorectal cancer (CRC) tissues, which is associated with poor prognosis. Mechanistically, we identified that the acetylation of ALDH1L2 at the K70 site is an important regulatory mechanism inhibiting the enzymatic activity of ALDH1L2 and disturbing cellular redox balance. Moreover, we revealed that sirtuins 3 (SIRT3) directly binds and deacetylates ALDH1L2 to increase its activity. Interestingly, the chemotherapeutic agent 5-fluorouracil (5-Fu) inhibits the expression of SIRT3 and increases the acetylation levels of ALDH1L2 in colorectal cancer cells. 5-Fu-induced ALDH1L2 acetylation sufficiently inhibits its enzymatic activity and the production of NADPH and GSH, thereby leading to oxidative stress-induced apoptosis and suppressing tumor growth in mice. Furthermore, the K70Q mutant of ALDH1L2 sensitizes cancer cells to 5-Fu both in vitro and in vivo through perturbing cellular redox and serine metabolism. Our findings reveal an unknown 5-Fu-SIRT3-ALDH1L2 axis regulating redox homeostasis, and suggest that targeting ALDH1L2 is a promising therapeutic strategy to sensitize tumor cells to chemotherapeutic agents.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Camundongos , Acetilação , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Ácido Fólico/metabolismo , Oxirredução , Sirtuína 3/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mutação
8.
Cell Rep ; 42(6): 112562, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245210

RESUMO

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Assuntos
Neoplasias da Mama , Formiatos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Neoplasias da Mama/metabolismo , Formiatos/metabolismo , Metionina , NADP , Espécies Reativas de Oxigênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
9.
J Microbiol Biotechnol ; 33(6): 707-714, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36959213

RESUMO

Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmídeos
10.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768644

RESUMO

Polyamine oxidases (PAOs) have been correlated with numerous physiological and developmental processes, as well as responses to biotic and abiotic stress conditions. Their transcriptional regulation is driven by signals generated by various developmental and environmental cues, including phytohormones. However, the inductive mechanism(s) of the corresponding genes remains elusive. Out of the five previously characterized Arabidopsis PAO genes, none of their regulatory sequences have been analyzed to date. In this study, a GUS reporter-aided promoter deletion approach was used to investigate the transcriptional regulation of AtPAO3 during normal growth and development as well as under various inductive environments. AtPAO3 contains an upstream open reading frame (uORF) and a short inter-cistronic sequence, while the integrity of both appears to be crucial for the proper regulation of gene expression. The full-length promoter contains several cis-acting elements that regulate the tissue-specific expression of AtPAO3 during normal growth and development. Furthermore, a number of TFBS that are involved in gene induction under various abiotic stress conditions display an additive effect on gene expression. Taken together, our data indicate that the transcription of AtPAO3 is regulated by multiple environmental factors, which probably work alongside hormonal signals and shed light on the fine-tuning mechanisms of PAO regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Genes Reporter
11.
Turk J Med Sci ; 52(4): 1256-1265, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36326420

RESUMO

BACKGROUND: The lipid storage myopathy (LSM) diagnosis is based on the patient's clinical manifestations and muscle pathology. However, when genetic testing is lacking, there is a high rate of misdiagnosis of the disease. This study aimed to investigate the clinical and pathological features of genetically diagnosed LSM in northern China, analyze genetic mutations' characteristics, and improve the LSM diagnostic rate. METHODS: Twenty patients with LSM diagnosed were collected; meanwhile, the clinical data, muscle samples, and routine pathological staining of muscle specimens were collected. The morphological changes of muscle fibers were observed under an optical microscope. RESULTS: Among the included patients, 18 cases had ETFDH (HGNC ID: 3483) mutations, and two had PNPLA2 mutations. Family pedigree verification was performed on three patients with heterozygous mutations in the ETFDH gene complex. Histopathological staining showed that all patients had fine vacuoles in the muscle fibers, and some of them merged to form fissures, and the lipid droplets increased in cells. After therapy, 18 patients were associated with a favorable prognosis, and two patients were ineffective with the treatment of neutral lipid storage myopathy (NLSDM) caused by PNPLA2 mutation. DISCUSSION: The clinical manifestations of LSM are complex and diverse, mainly manifested by proximal muscle weakness and exercise intolerance in the extremities. The pathological images of LSM muscles are abnormal storage of lipid droplets in muscle fibers, primarily involving type I fibers. The LSM patients were mainly multiple acyl-CoA dehydrogenase deficiency (MADD) caused by the ETFDH gene mutation. It is necessary to perform an accurate typing diagnosis of LSM.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/uso terapêutico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética
12.
J R Coll Physicians Edinb ; 52(3): 256-258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36369806

RESUMO

Multiple-acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder which can be split into three types. Type III MADD is associated with acute or subacute proximal muscle weakness and other variable non-specific features making it a challenging diagnosis for the clinician. This case report describes MADD in a 64 year-old lady, thought to be one of the latest first presentations of the disease. Unusually for this condition, the initial presentation was with dyspnoea. Furthermore, since this case provides further evidence that gene variants can predict age of onset, we advocate for further subclassification of type III MADD into late onset MADD (LO-MADD) when homozygous gene variants are present and very LO-MADD when heterozygous gene variants are found.


Assuntos
Acil-CoA Desidrogenases , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Pessoa de Meia-Idade , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Mutação , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Acil-CoA Desidrogenases/genética
13.
Clin Chim Acta ; 537: 181-187, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334790

RESUMO

BACKGROUND: Newborn screening (NBS) for multiple acyl-CoA dehydrogenase deficiency (MADD) has poor sensitivity. This study aimed to evaluate the feasibility of incorporating second-tier genetic screening for MADD. METHODS: A total of 453,390 newborns were screened for inherited metabolic disorders using tandem mass spectrometry from January 2017 to May 2022. A matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to identify 23 common ETFDH variants and used for second-tier screening of MADD. RESULTS: Overall, 185 newborns with suspected MADD received second-tier genetic screening. Thirty-three (17.8 %) newborns with positive results, of which 7 were homozygotes, 5 were compound heterozygotes, 21 were heterozygotes. Further genetic analysis revealed that 6 of the 21 newborns had a second ETFDH variant. Therefore, 18 patients were finally diagnosed with MADD, with a positive predictive value of 9.73 %. The detection rate and diagnostic rate of MALDI-TOF MS assay were 83.33 % and 66.67 %, respectively. Thus the incidence of MADD in our population was estimated at 1:25,188. Nine different ETFDH variants were identified in MADD patients. The most common ETFDH variant being c.250G > A with an allelic frequency of 47.22 %, followed by c.524G > A (13.89 %) and c.998A > G (13.89 %). All patients had elevation of multiple acylcarnitines at NBS. However, seven patients had normal acylcarnitine levels and two patients showed mild elevation of only two acylcarnitines during the recall review. CONCLUSION: We have established a high throughput MALDI-TOF MS assay for MADD screening. Half of the MADD patients would not be detected under conventional screening protocols. Incorporating second-tier genetic screening into the current NBS could improve the performance of MADD NBS.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Recém-Nascido , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Riboflavina/metabolismo , Testes Genéticos , Triagem Neonatal , Mutação
14.
Stem Cell Res ; 64: 102914, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162333

RESUMO

Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an inborn metabolic disorder that affects fatty acid oxidation and the catabolism of branched-chain amino acids, vitamins B and energy metabolism. In this study, the induced pluripotent stem cell (iPSC) line LZUSHi002-A from PBMCs of a 10-year-old male patient with ETFDH mutations using the episomal plasmids was established, which is an ideal in vitro model to understand the exact pathogenesis of MADD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Masculino , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação/genética , Ácidos Graxos/metabolismo , Vitaminas , Aminoácidos de Cadeia Ramificada/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo
15.
Ital J Pediatr ; 48(1): 164, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064718

RESUMO

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II is an extremely rare autosomal recessive inborn error of fatty acid beta oxidation and branched-chain amino acids, secondary to mutations in the genes encoding the electron transfer flavoproteins A and B (ETFs; ETFA or ETFB) or ETF dehydrogenase (ETFDH). The clinical manifestation of MADD are heterogeneous, from severe neonatal forms to mild late-onset forms. CASE PRESENTATION: We report the case of a preterm newborn who died a few days after birth for a severe picture of untreatable metabolic acidosis. The diagnosis of neonatal onset MADD was suggested on the basis of clinical features displaying congenital abnormalities and confirmed by the results of expanded newborn screening, which arrived the day the newborn died. Molecular genetic test revealed a homozygous indel variant c.606 + 1 _606 + 2insT in the ETFDH gene, localized in a canonical splite site. This variant, segregated from the two heterozygous parents, is not present in the general population frequency database and has never been reported in the literature. DISCUSSION AND CONCLUSION: Recently introduced Expanded Newborn Screening is very important for a timely diagnosis of Inherited Metabolic Disorders like MADD. In some cases which are the most severe, diagnosis may arrive after symptoms are already present or may be the neonate already died. This stress the importance of collecting all possible samples to give parents a proper diagnosis and a genetic counselling for future pregnacies.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Recém-Nascido , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
16.
Med Sci (Basel) ; 10(3)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36135832

RESUMO

The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 µM, Ki 1.60 µM) and 7 (IC50 0.23 µM, Ki 0.46 µM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Espermina , Acroleína/metabolismo , Flavinas , Peróxido de Hidrogênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Espermina/farmacologia
17.
Commun Biol ; 5(1): 787, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931745

RESUMO

Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Domínio Catalítico , Humanos , Camundongos , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Especificidade por Substrato
18.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886868

RESUMO

Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17ß-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17ß-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERß) was responsible for the repression of PAOX by 17ß-estradiol. A luciferase reporter assay showed that 17ß-estradiol downregulates PAOX promoter activity and that 17ß-estradiol-dependent PAOX repression disappeared after deletions (-3126/-2730 and -1271/-1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17ß-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.


Assuntos
Neoplasias da Mama , Receptor beta de Estrogênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliaminas , Fator de Transcrição AP-1/genética
19.
Molecules ; 27(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458660

RESUMO

The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites' genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Plasmodium , Inibidores Enzimáticos/farmacologia , Humanos , Oxigenases de Função Mista/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmodium/metabolismo , Proteínas Recombinantes/metabolismo , Tiofenos/farmacologia
20.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163549

RESUMO

Saline-alkaline stress is one of several major abiotic stresses in crop production. Exogenous spermidine (Spd) can effectively increase tomato saline-alkaline stress resistance by relieving membrane lipid peroxidation damage. However, the mechanism through which exogenous Spd pre-treatment triggers the tomato antioxidant system to resist saline-alkaline stress remains unclear. Whether H2O2 and polyamine oxidase (PAO) are involved in Spd-induced tomato saline-alkaline stress tolerance needs to be determined. Here, we investigated the role of PAO and H2O2 in exogenous Spd-induced tolerance of tomato to saline-alkaline stress. Results showed that Spd application increased the expression and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and the ratio of reduced ascorbate (AsA) and glutathione (GSH) contents under saline-alkaline stress condition. Exogenous Spd treatment triggered endogenous H2O2 levels, SlPAO4 gene expression, as well as PAO activity under normal conditions. Inhibiting endogenous PAO activity by 1,8-diaminooctane (1,8-DO, an inhibitor of polyamine oxidase) significantly reduced H2O2 levels in the later stage. Moreover, inhibiting endogenous PAO or silencing the SlPAO4 gene increased the peroxidation damage of tomato leaves under saline-alkaline stress. These findings indicated that exogenous Spd treatment stimulated SlPAO4 gene expression and increased PAO activity, which mediated the elevation of H2O2 level under normal conditions. Consequently, the downstream antioxidant system was activated to eliminate excessive ROS accumulation and relieve membrane lipid peroxidation damage and growth inhibition under saline-alkaline stress. In conclusion, PAO triggered H2O2-mediated Spd-induced increase in the tolerance of tomato to saline-alkaline stress.


Assuntos
Peróxido de Hidrogênio/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Espermidina/metabolismo , Diaminas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...